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A new time-dependent wavepacket method is developed to study the A + BC f AB + C, AC + B reaction
at the state-to-state level. The method only requires propagation of the wavepacket in reactant Jacobi coordinates
by extracting S-matrix information on a dividing surface right before the absorption potential in the product
region. It has particular advantages for reactions with deep wells and long-range attractive interactions in the
product channels in which the wavepacket in the product channels can only be absorbed sufficiently far away
from the interaction potential. Demonstration made on the benchmark H + H2 reaction shows that the method
is rather efficient in dealing with a direct reaction at high collision energy. The method is applied to study the
very challenging H + O2 (ν0 ) 0, j0 ) 0, 1) reaction, with state-to-state differential cross sections obtained
for the first time for collision energies up to 1.1 eV. The calculations not only show the power and accuracy
of the new approach in dealing with complex-forming reactions but also shed light on the dynamics of the
H + O2 reaction.

1. Introduction

Followingtheestablishmentofquantumtheoryforatom-diatom
reactive scattering in the 1970s,1 significant progress has been
made in the last two decades in quantum mechanical studies of
dynamical chemical processes at the molecular level with the
development of the hyperspherical-coordinate-based time-
independent (TID) coupled-channel (CC) method2-5 and the
Jacobi-coordinate-based time-dependent wavepacket (TDWP)
method.6-17 The CC method has particular advantages in treating
systems requiring a relatively small number of basis functions
or systems with very low kinetic energy. It now can be routinely
applied to study many triatomic reactions, such as H + H2, F
+ H2, and Cl + H2 reactions and their isotopically substituted
analogues,18-24 and has provided great insights into chemical
reaction dynamics. Recently, the TID method was applied to
calculate fully converged state-to-state differential cross sections
(DCS) for insertion reactions5,25-27 and ion-molecule reactions28

which are dominated by barrierless reactive pathways through
deep wells and proceed via long-living complexes. The DCS
achieved for these reactions have served as benchmarks for
dynamics studies of complex formation reactions theoretically.
However, due to the fact that the computational time in a CC
calculation scales as N3 (N is the number of basis functions), it
is extremely hard to apply the CC method to study even more
complex systems such as the H + O2 reaction, which possesses
a deep well and two heavy atoms other than hydrogen, despite
some progress made recently.29 The TDWP method scales much
more favorably than the CC method in both memory and number

of arithmetic operations; as a result, it is much more efficient
in dealing with complex systems requiring a large number of
basis functions. It has shown great power in calculating initial
state-selected total reaction probabilities for systems involving
morethanthreeatomsbyusingreactantJacobicoordinates.12-14,16,17

However, to extract S-matrix elements in a TDWP calculation,
one needs to transform the wave function initially prepared in
reactant Jacobi coordinates to product Jacobi coordinates,
making the calculations much more difficult.

Up to now, there were basically two main approaches to deal
with the coordinate transformation problem for triatomic A +
BC f AB + C, AC + B reactions. The first approach
transforms the whole wavepacket from A + BC coordinates to
AB + C/AC + B coordinates at a stage of propagation and
obtains a scattering wave function for AB + C/AC + B channels
after the propagation of the wavepacket in AB + C/AC + B
coordinates.8-11 The transformation can be made either when
the wavepacket is at its initial asymptotic position9-11 or after
the initial “focusing” wavepacket is propagated into the interac-
tion region.8,30 This approach can be called the “product-
coordinates-based” (PCB) approach because the main compu-
tation is carried out in product coordinates in that approach.
For the PCB approach, it requires two separate main propaga-
tions to get S-matrix elements for both AB + C and AC + B
channels. The second one is the well-known “reactant-product
decoupling” (RPD) approach, which transforms the no-return
part of the reacted wavepacket continuously in time from
reactant to product coordinates with the help of absorption
potentials.31,32 The RPD approach is very efficient in dealing
with direct reactants with barriers, as demonstrated by Althorpe
and co-workers,6,7 because, in this case, the absorption potential
can be applied right after the barrier as in initial selected total
reaction probability calculations, and it is also rather cheap to
carry out the continuous propagation for the absorbed wave-
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packet in a product channel. However, for a reaction with a
deep well and a long-range attractive interaction in both the
reactant and product channels, one has to put the absorption
potential sufficiently far away to avoid absorbing the wave
function, which may return into the deep well due to the long-
range interaction, making the RPD approach less efficient. If
there only exists a long-range attractive interaction in one
product channel, which happens to be under investigation, the
PCB method for that channel naturally becomes the right choice.
However, for a reaction with a long-range attractive interaction
in both product channels, the PCB method for one channel is
not efficient anymore because of the long-range interaction in
the other product channel. Therefore, neither the PCB or RPD
method is efficient in dealing with a reaction with a long-range
attractive interaction in both the reactant and product channels.

In this paper, we introduce a reactant-coordinate-based (RCB)
wavepacket method to study the A + BCf AB + C, AC + B
reaction at the state-to-state level using single reactant Jacobi
coordinates. The method is complementary to the existing PCB
and RPD methods and has particular advantages for reactions
with deep wells and long-range attractive interactions in the
product channels, in which the wavepacket in the product
channels can only be absorbed sufficiently far away from the
interaction potential. This means that in this case, the reacted
wavepacket actually has almost reached the product asymptotic
region before it is absorbed. Thus, one can obtain the scattering
wave functions for both product channels in their corresponding
asymptotic regions or the S-matrix elements for a state-to-state
calculation by only propagating a wavepacket in reactant
coordinates right before the wavepacket is absorbed. The key
ingredient for the success of this method is to obtain the product
scattering wave functions represented in the reactant channel
basis efficiently. Dai and Zhang33 once used a similar approach
to get state-to-state reaction probabilities for the H + O2 reaction
for the total angular momentum J ) 0 employing the time
correlation function formalism for the S-matrix introduced by
Tannor and Weeks.34 As pointed out by the authors, the usage
of the reactant Jacobi coordinate in their study was mainly due
to the consideration for simplification in the TDWP propagation,
not for the sake of optimal computational efficiency. Because
they have to save the outgoing wavepacket for all interested
product channels, it is impractical to extend this approach to J
> 0 calculations due to the fact that the number of open channels
increases almost linearly with J.

We will first show the application of the RCB method to the
benchmark H + H2 reaction and then show application of the
method to the very challenging H + O2 reaction. The H + O2

f HO + O reaction is considered to be the single most
important reaction in combustion chemistry.35-38 Considerable
amounts of experimental work have been carried out to measure
the reaction rate coefficient and absolute cross sections. On the
theoretical side, substantial effort has been devoted to developing
a global PES for the HO2 system from ab initio data. Among
the existing PESs, the double many-body expansion (DMBE)
IV PES of Varandas and co-workers39 has been widely used in
the past decade40-48 because of its reasonable and balanced
representation of the global properties of the PES. However,
the accuracy of the DMBE IV PES has recently been questioned
by several authors.49-52 In 2005, Xu, Xie, Zhang, Lin, and Guo
(XXZLG) reported a new PES for HO2(X˜2A′′ ) based on
∼15000 symmetry-unique ab initio points obtained using the
Davidson corrected internally contracted multireference con-
figuration interaction method (icNRCI+Q) with a large (aug-
cc-pVQZ) basis set.53 Quantum studies on the new XXZLG PES

demonstrated its high quality and uncovered many significant
differences in spectroscopic and dynamic attributes from the
DMBE IV PES.54-58 Recently, Honvault et al. calculated DCS
for the reaction near the reaction threshold by using the time-
independent method.29 Very recently, we briefly reported DCS
for the reaction for collision energies up to 1.1 eV by using the
RCB method.59 Here, we present the details of the calculations
and the results obtained.

The content of the paper is arranged as follows. In section 2,
the basic theoretical aspects for extracting state-to-state cross
sections using the RCB method are presented in detail. Section
3 presents the application of the method to the H + H2 and the
H + O2 reactions; section 4 concludes the present work.

2. Theory

2.1. Reactant-Coordinate-Based (RCB) Approach. To
study the A + BC f AB + C, AC + B reaction at a state-to-
state level, we use three sets of body-fixed (BF) Jacobi
coordinates to represent the corresponding wave functions, one
for the reactant A + BC (denoted as the R arrangement), another
for the product AB + C (denoted as the � arrangement), and
the last for the product AC + B (denoted as the γ arrangement).
Following the usual definition,1,2 we write the coordinates as
(Rν, rν, θν; Ων), where ν is either R or � or γ. For ν ) R (ν )
�, γ), rν is the BC (AB, AC) bond length, Rν is the length of
the vector R̂ν pointing from A (C,B) to the BC (AB, AC) center
of mass, and θν is the angle between the BC (AB, AC) bond
and R̂ν; Ων denotes the Euler angles orienting R̂ν in the space-
fixed (SF) frame.

The basic idea for the RCB method is to propagate an initial
wavepacket in the reactant Jacobi coordinates (R coordinates)
as in an initial state-selected total reaction probability calculation
to obtain scattering a wave function on the dividing surface for
the � and γ product channels directly and efficiently right before
the wavepacket is absorbed in the product region. In the present
study, we implement it as follows:

(1) Select the dividing surfaces in product regions at R� )
R�0 and Rγ ) Rγ0, which should be as close as possible to the
absorption potential but have no overlap with the absorption
potential;

(2) On the dividing surfaces Rν0 (ν ) �,γ), construct a
potential optimized discrete variable representation (PODVR),60

rνi (i ) 1,..., Nν
r), and Gaussian-Legendre quadratures, θνj (j )

1,..., Nν
θ), for rν and θν, respectively, to represent scattering wave

functions. Then, convert all of the grid points determined by
(Rν0, rνi, θνj) to their corresponding grid in reactant Jacobi
coordinates

where k ) 1,..., N�
r × N�

θ + Nγ
r × Nγ

θ.
(3) Propagate the wavepacket as in an initial state-selected

total reaction probability calculation and evaluate the time-
dependent wave function on these grid points (RRk, rRk, θRk), from
which the time-independent scattering wave functions can be
obtained via a Fourier transform.

(4) Extract state-to-state S-matrix elements from the time-
independent wave function by taking into account the residual
long-range interaction, which we assume to only have an effect
of elastic scattering in this study.

Because the representation of the chosen grid is very efficient,
evaluation of the time-dependent wave function is carried out

(RRk, rRk, θRk) )
(RR(Rν0, rνi, θνj), rR(Rν0, rνi, θνj), θR(Rν0, rνi, θνj)) (1)
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on very limited grid points during the wavepacket propagation.
As a result, the computational time for the evaluation step only
takes about 20% of the total propagation time.

2.2. Wave Packet Representation in Reactant Jacobi
Coordinates. The propagation of the wavepacket is only carried
out in reactant Jacobi coordinates in the BF representation using
the split operator method.61,62 In reactant coordinates, the
Hamiltonian for a given total angular momentum J can be
written as

where µRR is the reduced mass between the center of mass of A
and BC, J is the total angular momentum operator, j is the
rotational angular momentum operator of BC, and µrR is the
reduced mass of BC. The diatomic reference Hamiltonian is
defined as

where VrR is the diatomic reference potential.
The time-dependent wave function in the BF representation

can be written as63-66

where DMKR
Jε* (ΩR) is the parity-adapted normalized rotation

matrix, depending only on the Eular angles ΩR

where ε is the parity of the system defined as ε ) (-1)j+l, with
l being the orbital angular momentum quantum number, and
DMKR

Jε (ΩR) is the Wigner rotation matrix.67 In eq 4,
ψR(t,RR,rR,θR;KR), which only depends on three internal coor-
dinates of the system and the projection of the total angular
momentum KR on the BF z axis (along RR), can be expanded
as

where n is the translational basis label, un
υ is the translational

basis function for R, which is dependent on υ, as given in ref
41, φυ(rR) is the eigenfunction for ĥ(rR) given in eq 3, and yjKR

) [(2j + 1)/4π]1/2dKR0
j are the spherical harmonics. The dKRKν

j is
a reduced Wigner rotational matrix67 with Kν ) 0.

2.3. Scattering Wave Function in the Product Region. To
obtain time-independent scattering wave functions on the
dividing surfaces in the product region, we first evaluate the
time-dependent wave function given by eq 6 for every KR
component at all quadrature grid points (Rν0,rνi,θνj) given in eq
1 at every time step

where ν ) �, γ and hereafter indicates � or γ unless specified.
Then, we rotate the BF z axis from R̂R to R̂ν according to1

where dKνKR
J (∆) is a reduced Wigner rotational matrix67 and ∆

is the angle between R̂R and R̂ν.
Finally, we expand ψν(Rν0, rνi, θνj; Kν) in terms of basis functions

for rν by the collocation method32,68 and θν by Gaussian-Legendre
integration and combine it with DMKν

Jε* (Ων) shown in eq 5 to get the
time-dependent wave function Rν ) Rν0

The energy resolved scattering wave function Φυν jνKν
Jε (E) in the BF

coordinate can be obtained by a Fourier transformation

In practice, to reduce computational effort, one can first perform
this Fourier transformation for ψ on the quadrature points shown
in eq 7 and then carry out the BF z axis rotation and basis function
expansion shown in eqs 8 and 9.

2.4. Initial Wave Packet and Extraction of the S Matrix.
Practically, it is more convenient to construct an initial wavepacket
and perform S-matrix extraction in the SF representation rather
than in the BF representation as employed in some earlier studies,6,9

although it is also possible to carry out these procedures in the BF
representation without changing the locations of the initial wave-
packet and the dividing surface to extract the S matrix. In the SF
representation, an initial wavepacket for an initial state (υ0,j0,l0)
can be constructed simply as

where |JMj0l0ε〉 is the total angular momentum eigenfunction in
the SF representation with the parity of system ε ) (-1)j0+l0,
φυ0j0(rR) as the rovibrational eigenfunction for molecule BC and
G(RR) is a Gaussian wavepacket defined as

In order to propagate the wavepacket in the BF representation,
one should transform |JMj0l0ε〉 in eq 11 to its BF representation
counterpart as69

Ĥ ) - p
2

2µRR

∂
2

∂
2RR

+ (J - j)2

2µRR
RR

2
+ j2

2µrR
rµ

2
+ V(rR, RR) + ĥ(rR) (2)

ĥ(rR) ) - p
2

2µrR

∂
2

∂rR
2
+ VrR

(rR) (3)

ΨJMε(RR, rR, t) ) ∑
KR

DMKR

Jε* (ΩR)ψR(t, RR, rR, θR;KR) (4)

DMKR

Jε* (ΩR) ) (1 + δKR0)
-1/2�2J + 1

8π
[DMKR

J* (ΩR) + ε(-1)J+KRDM-KR

J* (ΩR)] (5)

ψR(t, RR, rR, θR;KR) ) ∑
n,υ,j

Fnυj
KR (t)un

υ(RR)φυ(rR)yjKR
(θR) (6)

ψ(t, Rν0, rνi, θνj;KR) )
Rν0rνi

RRrR
ψR[t, RR(Rν0, rνi, θνj),

rR(Rν0, rνi, θνj), θR(Rν0, rνi, θνj);KR] (7)

ψν(t, Rν0, rνi, θνj;Kν) ) ∑
KR

ψ(t, Rν0, rνi, θνj;KR) ×

1

√(1 + δKν,0)(1 + δKR,0)
[dKν,KR

J (∆) + ε(-1)KRdKν,-KR

J (∆)] (8)

ΨυνjνKν

Jε (t;Rν ) Rν0) ) ∑
Kν

DMKν

Jε* (Ων) ∑
υ, j

Cυj
Kν(t)φυ(rν)yjKν

(θν)

(9)

Φυν jνKν

Jε (E;Rν0) ) ∫0

+∞
eiEtΨυν jνKν

Jε (t;Rν0)dt (10)

ΨRυ0 j0 l0

JMε (t ) 0) ) G(RR)φυ0j0
(rR)|JMj0l0ε〉 (11)

G(RR) ) ( 2

πτ2)1/4
exp[- (RR - RR

c )

τ2
- ikcRR] (12)
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where Cl0 K
Jj0ε is the parity-adapted orthogonal transform matrix

between the SF and BF representations1,9,70-72 and is given by

where 〈 ...〉 is Clebsch-Gordan coefficient.
Similar to the construction of an initial wavepacket, the

scattering wave function for an initial state (υ0j0l0) in the BF
representation ΦυνjνKνrυ0j0l0

Jε (E) in eq 10 is first transformed into
the SF representation by the orthogonal transformation matrix
given by eq 14

Then, the desired state-to-state scattering matrix Sυνjνlνrυ0j0l0
Jε (E)

in the SF representation can be calculated from the asymptotic
boundary condition

where A(E) is given by

where Hl is an outgoing Riccati-Hankel function.
Finally, the scattering matrix Sυνjνlνrυ0j0l0

J (E) in the SF repre-
sentation is transformed into the helicity representation by the
standard transformation

By substituting the scattering matrix SυνjνKνrυ0j0K0
Jε (E) in the

helicity representation into the standard formulas, the state-to-
state integral cross sections71 are then obtained

and the state-to-state differential cross sections71

in which ϑ is the angle between the scattered AC + B/AB + C
products and the incoming A + BC reactants.

2.5. Removing the Residual Long-Range Potential. At the
dividing surface Rν ) Rν0, where the boundary condition
matching that shown in eq 16 is carried out, the interaction
potential between BC(AC) and A(B) should be negligibly small.
For reactions with long-range interactions in the product region,
this means that the value of Rν0 should be sufficiently large,
making the calculations in reactant Jacobi coordinates unfavor-
able. A simple way to reduce the value of Rν0 is to include the
elastic scattering effects after the dividing surface explicitly in
the boundary condition, so that one can move the dividing
surface to a place where inelastic scattering effects between
BC(AC) and A(B) vanish. This can be achieved by replacing
the outgoing Riccati-Hankel function in eq 16 by 
υjl(R), which
satisfies the following equation

where

and Uυjl(R) can be calculated as

with V(R,r,θ) being the residual long-range interaction, which
should only have elastic effects after the dividing surface. The
function 
υjl(R) can be simply obtained from eq 21 by backward
propagating an outcoming Riccati-Hankel function from a place
when Uυjl(R) ) 0 by using the renormalized Numerov method.

We note that the similar method has been used by Launay
and co-workers to take care of the long-range potential in
ultracold triatomic collisions processes, except that they em-
ployed a finite difference method to solve eq 21.73 In principle,
by using this approach, we can reduce the value of Rν0 further
by including inelastic scattering effects from the residual long-
range interaction after the dividing surface in the boundary
condition. This will be pursued in our follow-up studies.

3. Results and Discussion

In this section, we will first present very briefly an application
of the RCB method to the H+H2 as a demonstration of the
methodology. Greater details are then given for the application
of the method to the H+O2 reactions.

3.1. Application to the H + H2 (υ0 ) 0, j0 ) 0) Reaction.
The H + H2 exchange reaction and its isotopomers have been
the focus of numerous experimental and theoretical studies. It
is also a benchmark system for testing new theoretical meth-
odologies. Aoiz et al. recently gave a comprehensive review
on the progress on the dynamical study of this reaction.74 With

|JMj0l0〉 ) ∑
KRg0

Cl0KR

Jj0ε |JMj0KR〉 ) ∑
KRg0

Cl0KR

Jj0ε DMKR

Jε* (ΩR)yj0KR

(13)

ClK
Jjε ) � (2l + 1)

(2J + 1)√(2 - δK,0)〈jKl0|JK〉 (14)

Φυνjν lνrυ0 j0 l0

Jε (E) ) ∑
Kν

ClνKν

JjνεΦυν jνKνrυ0 j0l0

Jε (E) (15)

Φυν jνlνrυ0 j0l0

Jε (E;Rν0) )

-A(E)(2πp2kυνjν

µRν
)1/2

Sυν jνlνrυ0 j0 l0

Jε (E)Hlν
(kυν jν

Rν0
) (16)

A(E) ) ( µRR

2πp2kυ0 j0
)1/2

∫Hl0
(kυ0 j0

RR)G(RR)dRR (17)

Sυ′j'K'rυjK
J )

∑
l'l

il-l'�2l' + 1
2J + 1

〈j'K'l'0|JK'〉Sυ′j'l'rυjl
J � 2l + 1

2J + 1
〈jKl0|JK〉

(18)

συν jνrυ0 j0
) π

(2j0 + 1)kυ0 j0

2 ∑
Kν

∑
K0

∑
J

(2J + 1)|Sυν jνKνrυ0 j0K0

J |2

(19)

dσυν jνrυ0 j0
(ϑ, E)

dΩ
) 1

(2j0 + 1)

∑
Kν

∑
K0

| 1
2ikυ0 j0

∑
J

(2J + 1)dKνK0

J (ϑ)Sυν jνKνrυ0 j 0K0

J |2 (20)

(- p2

2µ
d2

dR2
+ l(l + 1)p2

2µR2
+ Uυjl(R))
υjl(R) )

kυj
2

2µ

υjl(R)

(21)


υjl(R) ∼ Hl(kυjR) when Uυjl(R) ) 0 (22)

Uυjl(R) ) 〈φυj|〈JMjlε|V(R, r, θ)|JMjlε〉 |φυj〉 (23)
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advances in experimental and theoretical methods, excellent
agreement between theory and experiment has been accom-
plished for this reaction on the BKMP2 potential energy surface
(PES)18,19,75,76 as well as on the latest CCI PES.77,78 Here, we
calculate DCS on the BKMP2 PES by using the RCB approach
and compare the result with that obtained from the ABC
program.4

The parameters used in the time-dependent wavepacket
calculation are as follows. A total of 127 sine functions (among
them, 59 for the interaction region) are employed for the
translational coordinate RR in a range of [0.1,18.0]a0. A total
of 69 vibrational functions are employed for rR in the range of
[0.5,11.6] for the reagent H2 in the interaction region. We use
jmax ) 60 for the rotational basis. The permutation symmetry
of the diatomic reagent is used, which saves half of the angular
grid points. Calculations are carried out for J up to 42, with the
maximum K value of 30 to converge the state-to-state differential
cross sections for collision energies up to 2.5 eV. The time step
used in the calculation is 15 au For low J partial waves, a total
of 600 time steps are used to accomplish the wavepacket
propagation from the reagent channel to the product channel.
For higher J partial waves, the wavepackets are propagated for
a shorter time because the reaction probability in the low energy
range is negligible. Since the long-range interaction is small
for this reaction, we can put the dividing surface at Rν0 ) 7.0a0

to converge the state-to-state information without carrying out
renormalized Numerov propagation after the dividing surface.
For each KR block, we use 8 PODVR points for rν and 20
Gaussian-Legendre quadrature points for the rotational motion
of the diatomic product. These 160 evaluation points are
sufficient for obtaining all of the product-state-resolved informa-
tion up to a collision energy of 2.5 eV.

It is worthwhile to point out that for a direct reaction with a
barrier such as the H + H2 reaction, the RCB method is less
efficient than the RPD approach as one can see that the number
of basis functions used here is substantially larger than that
required in a RPD calculation. Nevertheless, our RCB calcula-
tion for the reaction is very fast even with such a large basis
set. For J ) 0, it only takes less than half of a minute of CPU
time on a dual-processor work station.

Figure 1 shows the state-to-state DCS for some final states
obtained by using our RCB approach at four collision energies.
For collision energies of 0.76 and 1.36 eV, the DCS obtained
using the ABC program4 are also shown in Figure 1A-D for
comparison. The parameters used for the ABC calculation are
slightly larger than those used in the work of ref 11 with Kmax

) 6. It can be seen that the agreement for these two calculations
is very good at these two collision energies, indicating that our
RCB program is able to predict accurate DCS for triatomic
reactions. However, to converge DCS at higher collision
energies such as those shown in Figure 1E-H, we need to use
a larger Kmax for the ABC program, making it much more
expensive than the RCB approach. Hence, the RCB method may
be useful for studying direct triatomic reactions at higher
collision energies.

3.2. Application to the H + O2 (υ0 ) 0, j0 ) 0,1) Reaction.
In this subsection, we present the results for application of the
RCB method to the endothermic H + O2 (υ0 ) 0, j0 ) 0, 1)
reaction. The O2 (υ0 ) 0, j0 ) 0) molecule does not exist
physically because of the nuclear spin statistics, but we can use
it to test the numerical convergence of our calculations and to
examine the influence of the reactant rotational state on
reactivity. We use the XXZLG PES with a deep well (∼2.38
eV from the H + O2 asymptote), which supports long-lived

resonances and has a long-range attractive interaction in the
exit O + OH channel that requires a large grid size and long
propagation time to accurately describe the sharp resonance
peaks and the near-threshold energy reaction probabilities.53 The
numerical parameters used in the RCB calculations are as
follows. A total of 235 sine functions (among them, 149 for
the interaction region) are employed for the translational
coordinate RR in a range of [0.015,15.0]a0. A total of 149
vibrational functions are employed for rR in the range of
[0.5,14.0] au for the reagent O2 in the interaction region. We
use jmax ) 120 for the rotational basis. The permutation
symmetry of the diatomic reagent is used, which saves half of
the angular grid points. Full K blocks (Kmax ) min(J, jmax)) are
used because, for the system, a rigorous treatment of Coriolis
coupling is required. The time step used in the calculation is
10 au, and the total propagation time is 170000 au. The applied
absorption potential starts from rR ) 10.8 au and RR)13.2 au.
The dividing surface in the product region for extracting
S-matrix information is placed at Rν0 ) 10.5 au. Only five
PODVR points are used for rν because there are only two open
vibrational channels for the collision energy up to 1.5 eV. For
rotational motion of the diatomic product, 22 Gaussian-Legendre
quadrature points are employed. Thus, for each KR block, we
have in total 110 grid points on which the time-dependent wave
function is evaluated during the wavepacket propagation. These
110 grid points are sufficient to converge product-state-resolved
results up to Ec ) 1.5 eV.

Figures 2 and 3 show the total reaction probabilities for the
H + O2 (υ0 ) 0, j0 ) 0) reaction with J ) 0 and 12, respectively,
from the summation of the state-to-state reaction probabilities
obtained by using the RCB approach, in comparison with those
from the initial state-selected wavepacket (ISSWP) approach,
which has been widely used for total reaction probability
calculations in reactant Jacobi coordinates.12-14,16,17,41 As can

Figure 1. State-to-state DCS obtained by the RCB method (solid lines)
for the H′ + H2 (υ0 ) 0, j0 ) 0) f H + HH′ (υ′ ) 0,1, j′ ) 0,5)
reaction at four selected collision energies. The DCS for Ec ) 0.76
and 1.36 eV obtained by the ABC code are shown by the crosses for
comparison.

Triatomic State-to-State Reaction Dynamics J. Phys. Chem. A, Vol. 113, No. 16, 2009 4149



be seen from Figures 2A and 3A, agreements between the total
probabilities from the RCB and ISSWP calculations are very
good, even without the renormalized Numerov propagation after
the dividing surface, despite the fact that the total reaction
probabilities are dominated by rich and sharp resonance
structures. From Figures 2B and 3B, one can see that the
renormalized Numerov propagation after the dividing surface
does improve the accuracy of the total reaction probabilities,
in particular, for J ) 12 shown in Figure 3B. We found that
for larger J, the renormalized Numerov propagation becomes
even more important, indicating that the matching procedure
becomes more sensitive to the residual long-range interaction
after the dividing surface with an increasingly larger centrifugal
interaction.

Figure 4 compares the vibrational-state-resolved reaction
probabilities for the H + O2 (υ0 ) 0, j0)f O + OH (υ′) reaction
with a total angular momentum of J ) 0 obtained by the present
RCB method and by the PCB method implemented with
coordinate transformation of the whole wavepacket in the
interaction region.8,30 First, we can see that vibrational-state-
resolved reaction probabilities for the product HO (υ′ ) 0) does
not increase monotonously; instead, it begins to decrease with
further increase of collision energy after the υ′ ) 1 channel
becomes open. As can be seen from the figure, the agreement
is excellent between these two total different calculations, one
using reactant Jacobi coordinates and the other using product
Jacobi coordinates. This means that both approaches are able
to provide sufficiently accurate dynamical information; what
we should be concerned with is the computational efficiency.
The numerical parameters for the PCB calculation to propagate
the wavepacket in product Jacobi coordinates after coordinates
transform are as follows. A total of 429 sine functions (among
them, 269 for the interaction region) are employed for the

translational coordinate R in a range of [0.0,20.0]a0. A total of
119 vibrational functions are employed for r in the range of
[0.5,13.0] au in the interaction region. We use jmax ) 140 for
the rotational basis. With these parameters, we can obtain well-
converged state-to-state reaction probabilities for collision
energies up to 1.5 eV. The time step used in the calculation is
10 au, and the total propagation time is 170000 au, as in the
RCB calculations. The state-to-state analysis plane is placed at
Rν ) 16.5 au, which is sufficiently far to reach the true product
asymptotic region with negligible interaction between O and
OH. Hence, one can see that the numbers of basis functions for
r and θ are quite close for these two calculations, while the
number of basis functions for R coordinate used in the PCB
calculation is almost double that used in the RCB calculation.
Furthermore, the permutation symmetry of the diatomic reagent
O2 cannot be utilized in the product Jacobi coordinates, which
increases the computational effort by more than a factor of 2.
As a result, the computational time consumed for a PCB
calculation is more than that required by the RCB approach by
about a factor of 3, making it much harder to use the PCB
approach to calculate DCS for this reaction.

Figure 5 shows rovibrational-state-resolved reaction prob-
abilities for the product OH at the (j′,υ′) ) (0,0), (0,6), and
(1,6) states, obtained by the PCB and RCB approaches for
collision energies up to 1.5 eV and J ) 0. Similar to the total
reaction probabilities, the reaction probabilities to every product
rotational state are dominated by narrow and mostly overlapping
resonances. The reaction probabilities to the (0,0) and (0,6) states
decrease very substantially in the high collision energy region,
in particular, when the υ′ ) 1 state becomes open. Again, one
can see that the results from the PCB and RCB methods agree
with each other very well. Since the dividing surface for S-matrix

Figure 2. Total reaction probabilities for the H + O2 (υ0 ) 0, j0 ) 0)
reaction for a total angular momentum of J ) 0 obtained by using the
RCB and ISSWP approaches. (A) The boundary matching is carried
out at the matching point Rν0 with the Riccati-Hankel function; (B)
before performing boundary matching, the Riccati-Hankel function
has been propagated by the renormalized Numerov method to the
matching point Rν0.

Figure 3. Same as Figure 2, except for J ) 12.
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extraction in the PCB calculation is put at Rν0 ) 16.5 au, much
further than that used in the RCB calculation of Rν0 ) 10.5 au,
the good agreement between these two calculations on the
rovibrational-state-resolved probabilities implies that the residual
interaction potential after Rν0 ) 10.5 au does only have some
elastic effects; hence, it is sufficiently accurate for us to extract
the S matrix on the Rν0 ) 10.5 au dividing surface in our RCB
calculation.

Calculations of the reactive cross sections for this reaction
in a broad collision energy range are expensive computationally,
even though the introduced RCB approach is very efficient for
state-to-state study of the reaction. Besides the difficulties in
the deep well description and rigorous Coriolis coupling
consideration, a large number of partial waves should be
included to converge the cross section because of the large
collision energy threshold in the reactant channel and the heavy
reduced mass of the system in the product channel. We
calculated partial waves with J up to 52 to converge the cross
section for a collision energy up to 1.1 eV. Figure 6 displays
the rotational-state-resolved integral cross sections (ICS) for the
H + O2 (υ ) 0, j ) 0)f O + OH (υ′ ) 0, j′ ) 0-13) reaction
with a collision energy up to 1.1 eV, right before the υ′ ) 1

channel becomes open. As can be seen from the figure, ICS for
every final rotational state increases very rapidly to its maximum
value with the increase of the collision energy when the
rotational state becomes open and then begins to decrease
steadily with the further increase of the collision energy.

Figure 7 shows the rotational state distributions at collision
energies of 0.7, 0.8, 0.9, and 1.0 eV for the (υ0, j0) ) (0,0) and
(0,1) initial states. It is apparent that the distributions of the
product rotational states from these two initial states are almost
identical, indicating that the reaction dynamics is insensitive to
the reagent rotational excitation, at least at low j0 values. As

Figure 4. Vibrational-state-resolved reaction probabilities for the H
+ O2 (υ0 ) 0, j0 ) 0)f O + HO (υ′ ) 0,1) reaction (J ) 0) obtained
by the RCB approach (black lines) and by the PCB approach (red lines).
(A) Vibrational-state-resolved reaction probabilities summation (total
reaction probabilities); (B) reaction probabilities for υ′ ) 0; (C) reaction
probabilities for υ′ ) 1.

Figure 5. Rovibrational-state-resolved reaction probabilities for the
H + O2 (υ0 ) 0, j0 ) 0) reaction (J ) 0) to the product OH at the
(j′,υ′) ) (0,0), (0,6), and (1,6) states, obtained by the PCB and RCB
approaches as a function collision energy.

Figure 6. OH rotational-state-resolved integral cross sections as a
function of collision energy, for the H + O2 (υ0 ) 0, j0 ) 0) reaction.
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we show in ref 59, the rotational state distribution increases
almost monotonically with the rotational quantum number (jHO)
and peaks near the highest allowed rotational state, consistent
with the complex-forming mechanism. However, the rotational
state population does not increase linearly with jHO; instead, it
overpopulates at large jHO values and underpopulates at small
jHO values. Hence, the OH rotational distribution is not fully
statistical; otherwise, the population should increase linearly with
jHO because the number of rotational states increases linearly
with jHO due to the degeneracy factor. Such nonstatistical
behaviors of OH rotational distributions59 are consistent with
earlier experimental observations.79-81

Figure 8 presents the ratio between the product rotational
energy to the total available energy as a function of collision
energy for the (υ0, j0) ) (0,0) initial state, along with the
threshold energy of every rotational channel. As can be seen
from the figure, about 50% of the total available energy is
deposited on the rotational motion of OH, except in the very
low energy region where the ratio has a smaller value. It is
interesting to observe that the ratio curve exhibits oscillatory
structure; once a rotational channel becomes open, there is a
sharp rise in the ratio, indicating that this reaction has a strong
preference to produce HO in the highest possible rotational
states, as seen from rotational state distributions shown in Figure
7.

The differential cross sections (DCS) at collision energies of
0.7, 0.8, 0.9, and 1.0 eV are displayed in Figure 9 for initial
states of (υ0, j0) ) (0,0) and (0,1). It is clear that the product
angular distribution is dominated by scattering in both the

forward and backward angles, again consistent with the
complex-forming mechanism. However, the DCS are not
entirely symmetrical, and the asymmetry varies with the collision
energy. In addition, the DCS for j0 ) 0 and 1 show no qualitative
difference, indicating again that the reaction dynamics is
insensitive to the reagent rotational excitation, at least at low j0

values.

4. Summary

We introduced a new time-dependent wavepacket method to
study the A + BC f AB + C, AC+B reaction at the state-

Figure 7. OH rotational-state-resolved integral cross sections for the
H + O2 (υ0 ) 0, j0 ) 0,1) reactions at several collision energies.

Figure 8. Fraction of total available energy deposited in the OH
rotational energy as a function of the collision energy for the H + O2

(υ0 ) 0, j0 ) 0) reaction.

Figure 9. Differential cross sections for the H + O2 (υ0 ) 0, j0 )
0,1) reactions at several collision energies.
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to-state level. The method only requires propagating the
wavepacket in the reactant Jacobi coordinates by extracting
S-matrix information on a dividing surface right in front of the
absorption potential. The method has particular advantages for
reactions with deep wells and long-range attractive interactions
in the product channels, in which the wavepacket in the product
channels can only be absorbed sufficiently far away from the
interaction potential. In addition, it is able to exploit the
permutation symmetry of the reacting BC molecule if it contains
two identical atoms or yield dynamical information for both
the AB + C and AC + B channels from one wavepacket
propagation if BC is a heteronuclear molecule. With an efficient
way to obtain the product scattering wave functions represented
in the reactant channel basis, the method is expected to be more
efficient than the existing methods in dealing with systems with
deep wells and long-range attractive interactions in the product
channels and may find useful applications to many reactive
scattering processes and to photodissociation dynamics processes
where the product coordinates have a singularity problem.82

We first test this method on the H + H2 reaction and obtain
the state-to-state differential cross sections for collision energies
up to 2.5 eV. The calculated DCS in low collision energy region
are in excellent agreement with that obtained using the ABC
code. For high collision energy, the current RCB method is
much more efficient than the ABC program4 in obtaining DCS.
The method is further applied to the very challenging H + O2

(υ0 ) 0,j0 ) 0,1) reaction. DCS are obtained for the first time
for collision energies up to 1.1 eV for the reaction. The
calculations not only demonstrated the power and accuracy of
the new RCB approach in dealing with complex-forming
reactions but also shed light on the dynamics of the H + O2

reaction.
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